Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108240

RESUMO

[Ca2+]-dependent crystallization of the Ca2+-ATPase molecules in sarcoplasmic reticulum (SR) vesicles isolated from scallop striated muscle elongated the vesicles in the absence of ATP, and ATP stabilized the crystals. Here, to determine the [Ca2+]-dependence of vesicle elongation in the presence of ATP, SR vesicles in various [Ca2+] environments were imaged using negative stain electron microscopy. The images obtained revealed the following phenomena. (i) Crystal-containing elongated vesicles appeared at ≤1.4 µM Ca2+ and almost disappeared at ≥18 µM Ca2+, where ATPase activity reaches its maximum. (ii) At ≥18 µM Ca2+, almost all SR vesicles were in the round form and covered by tightly clustered ATPase crystal patches. (iii) Round vesicles dried on electron microscopy grids occasionally had cracks, probably because surface tension crushed the solid three-dimensional spheres. (iv) [Ca2+]-dependent ATPase crystallization was rapid (<1 min) and reversible. These data prompt the hypothesis that SR vesicles autonomously elongate or contract with the help of a calcium-sensitive ATPase network/endoskeleton and that ATPase crystallization may modulate physical properties of the SR architecture, including the ryanodine receptors that control muscle contraction.


Assuntos
Pectinidae , Retículo Sarcoplasmático , Animais , Retículo Sarcoplasmático/metabolismo , Adenosina Trifosfatases , ATPases Transportadoras de Cálcio/metabolismo , Contração Muscular , Pectinidae/metabolismo , Trifosfato de Adenosina , Cálcio/metabolismo
2.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328731

RESUMO

The Ca2+-ATPase is an integral transmembrane Ca2+ pump of the sarcoplasmic reticulum (SR). Crystallization of the cytoplasmic surface ATPase molecules of isolated scallop SR vesicles was studied at various calcium concentrations by negative stain electron microscopy. In the absence of ATP, round SR vesicles displaying an assembly of small crystalline patches of ATPase molecules were observed at 18 µM [Ca2+]. These partly transformed into tightly elongated vesicles containing ATPase crystalline arrays at low [Ca2+] (≤1.3 µM). The arrays were classified as ''tetramer'', "two-rail" (like a railroad) and ''monomer''. Their crystallinity was low, and they were unstable. In the presence of ATP (5 mM) at a low [Ca2+] of ~0.002 µM, "two-rail" arrays of high crystallinity appeared more frequently in the tightly elongated vesicles and the distinct tetramer arrays disappeared. During prolonged (~2.5 h) incubation, ATP was consumed and tetramer arrays reappeared. A specific ATPase inhibitor, thapsigargin, prevented both crystal formation and vesicle elongation in the presence of ATP. Together with the second part of this study, these data suggest that the ATPase forms tetramer units and longer tetramer crystalline arrays to elongate SR vesicles, and that the arrays transform into more stable "two-rail" forms in the presence of ATP at low [Ca2+].


Assuntos
Pectinidae , Retículo Sarcoplasmático , Adenosina Trifosfatases , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Retículo Sarcoplasmático/metabolismo
3.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807779

RESUMO

The Ca2+-transport ATPase of sarcoplasmic reticulum (SR) is an integral, transmembrane protein. It sequesters cytoplasmic calcium ions released from SR during muscle contraction, and causes muscle relaxation. Based on negative staining and transmission electron microscopy of SR vesicles isolated from rabbit skeletal muscle, we propose that the ATPase molecules might also be a calcium-sensitive membrane-endoskeleton. Under conditions when the ATPase molecules scarcely transport Ca2+, i.e., in the presence of ATP and ≤ 0.9 nM Ca2+, some of the ATPase particles on the SR vesicle surface gathered to form tetramers. The tetramers crystallized into a cylindrical helical array in some vesicles and probably resulted in the elongated protrusion that extended from some round SRs. As the Ca2+ concentration increased to 0.2 µM, i.e., under conditions when the transporter molecules fully carry out their activities, the ATPase crystal arrays disappeared, but the SR protrusions remained. In the absence of ATP, almost all of the SR vesicles were round and no crystal arrays were evident, independent of the calcium concentration. This suggests that ATP induced crystallization at low Ca2+ concentrations. From the observed morphological changes, the role of the proposed ATPase membrane-endoskeleton is discussed in the context of calcium regulation during muscle contraction.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Cálcio/farmacologia , Citoesqueleto/metabolismo , Contração Muscular/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Animais , Cálcio/metabolismo , Citoesqueleto/ultraestrutura , Transporte de Íons/efeitos dos fármacos , Masculino , Coelhos , Retículo Sarcoplasmático/ultraestrutura
4.
J Membr Biol ; 246(2): 141-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23124945

RESUMO

To determine the effect of denaturants [guanidine hydrochloride (GdnHCl) and urea] and polyols [with various molecular masses (62.1-600)] on calcium binding at the two hypothesized conformers (A and B forms) of the chemically equivalent sarcoplasmic reticulum Ca(2+)-ATPase, which bind two calcium ions in different manners, we examined the effect of these reagents on the calcium dependence of ATP-supported phosphorylation of the ATPase molecules and of their calcium-activated, acetyl phosphatate hydrolytic activity. (1) GdnHCl (~0.05 M) and urea (~0.5 M) increased the apparent calcium affinity (K (0.5)) of 2-6 µM of noncooperative binding [Hill coefficient (n (H)) ~ 1] of the A form to 10-40 µM. (2) The employed polyols transformed the binding of the A form into cooperative binding (n (H) ~ 2), accompanying the approach of its K (0.5) value to that (K (0.5) = 0.04-0.2 µM) of the cooperative binding (n (H) ~ 2) of the B form; the transition concentration (0.025-2 M) of the polyols, above which such transformation occurs, was in inverse relation to their molecular mass. (3) The binding of the B form was resistant to these denaturants and polyols. Based on these data, a structural model of the two forms, calcium-binding domains of which are loosely and compactly folded, is presented.


Assuntos
ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Guanidina/farmacologia , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Polímeros/farmacologia , Coelhos , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
6.
J Biol Chem ; 277(27): 24180-90, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-11976321

RESUMO

The effect of ATP on calcium binding of the Ca2+-ATPase of the sarcoplasmic reticulum has not been clarified. By comparing the calcium dependence of the ATPase activity and of phosphorylation of the ATPase molecules with that of calcium binding in the absence of ATP, we show the existence of two types of regulatory site of the enzyme molecules at which ATP binding variously improves the calcium binding performance of the molecules depending on the aggregation state of the molecules and pH; the two regulatory sites bind ATP at submillimolar (0.25 mm) and millimolar (5 mm) ATP, respectively. The results are discussed based on a model of two conformational variants (A and B forms) of the chemically equivalent ATPase molecules (Nakamura, J., and Furukohri, T. (1994) J. Biol. Chem. 269, 30818-30821). For example, in the sarcoplasmic reticulum membrane at pH 7.40, submillimolar ATP converted the calcium binding manner of the A form from noncooperative (Hill number (n(H)) of approximately 1) to cooperative (n(H) approximately 2), concurrent with a decrease in the apparent calcium affinity (K(0.5)) from 2-6 to 0.1-0.3 microm. The binding of the A form became almost the same as that of the B form (n(H) approximately 2, K(0.5) approximately 0.2 microm), which was not affected by ATP. Millimolar ATP further decreased the K(0.5) of the cooperative binding of the two forms to approximately 0.05 microm. Regulation of the calcium binding performance by ATP is discussed in terms of monomeric and oligomeric pathway models.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Retículo Sarcoplasmático/enzimologia , Animais , Sítios de Ligação , Cálcio/farmacologia , Membrana Celular/enzimologia , Cinética , Músculo Esquelético/enzimologia , Fosforilação , Coelhos , Especificidade por Substrato
7.
J Biol Chem ; 277(27): 24191-6, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-11976322

RESUMO

To examine the effect of CTP, GTP, ITP, and UTP on calcium binding of Ca2+-ATPase molecules of the sarcoplasmic reticulum, the calcium dependence of the Ca2+-activated hydrolysis activities of these NTPs of the enzyme molecules was examined by comparison with that of calcium binding of the molecules in the absence of the NTPs at pH 7.40. In the sarcoplasmic reticulum membrane, CTP, GTP, and ITP did not affect the noncooperative (Hill value (n(H)) of approximately 1, apparent calcium affinity (K(0.5)) of 2-6 microm)) and cooperative (n(H) approximately 2, K(0.5) approximately 0.2 microm) calcium binding of the molecules, whereas UTP caused the molecules to highly cooperatively (n(H) approximately 4) bind calcium ions with a lowered K(0.5) of approximately 0.04 microm. When the enzyme molecules were solubilized with detergent, all of these NTPs reversibly degraded the calcium affinity of the molecule (from K(0.5) = 3-5 to >40 microm), although the effect of the NTPs on the negatively cooperative manner (n(H) approximately 0.5) of calcium binding was not experimentally obtained. Taking into account the first part of this study (Nakamura, J., Tajima, G., Sato, C., Furukohri, T., and Konishi, K. (2002) J. Biol. Chem. 277, 24180-24190) showing the improving effect of ATP on calcium binding of the membranous and solubilized molecules, the results show that ATP is the only intrinsic substrate for the enzyme molecule. This NTP regulation is discussed in terms of the oligomeric structure of the molecules.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Citidina Trifosfato/farmacologia , Guanosina Trifosfato/farmacologia , Músculo Esquelético/enzimologia , Retículo Sarcoplasmático/enzimologia , Uridina Trifosfato/farmacologia , Animais , Inosina Trifosfato/farmacologia , Cinética , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...